菠菜担保平台官网
菠菜担保平台官网門戶 ENGLISh
 
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
 
  師資隊伍
研究生導師
博士生導師
碩士生導師
學院教師
兼職教授
人才招聘
博士生導師 首頁 > 師資隊伍 > 研究生導師 > 博士生導師 > 正文
 
劉金興

姓  名

劉金興

出生年月

19796

政治面貌

群衆

最高學位

博士

職  稱

教授

任職年月

201311

職  務

任職年月

所在學科

力學

博導/碩導

博導、碩導

學習與工作經曆

學習經曆:

20029 – 20077

作為碩博連讀生就讀于中國科學院力學研究所非線性力學國家重點實驗室。

19989 – 20027         

作為本科生就讀于中國科學技術大學力學與機械工程系。

工作經曆:

201310至今                         

職位:教授,博導

單位:菠菜担保平台官网,菠菜担保平台官网,力學與工程科學系。

20109 – 20139                

職位:博士後

單位:計算固體力學實驗室,物理科學部,阿蔔杜拉國王科技大學,沙特阿拉伯。

20098 – 20107

職位:博士後

單位:機械工程系,加拿大紐布倫斯維克大學 。

200811 – 20097              

職位:博士後

單位:機械工程系,加拿大曼尼托巴大學 。

200710 – 200810            

職位:研究員

單位:土木環境系,新加坡南洋理工大學 。

學術與社會任職

中國力學學會會員,江蘇省力學學會理事,江蘇省固體力學專委會委員,江蘇省計算力學專委會委員

主講課程

本科生:彈性力學,工程力學,專題講座與文獻調研

研究生:專業力學基礎,computational mechanics(留學生)

博士生:專業力學基礎,advanced computational mechanics(留學生)

研究領域

力學超材料理論建模與優化設計;

非均質準脆性材料的損傷斷裂機理研究;

微/納米尺寸效應;

廣義連續介質理論;

金屬韌性失效。

基于人工智能AI研發理論與材料

科研項目

結題項目:

國家自然科學基金項目,基于應變梯度理論的微尺度循環塑性本構模型研究,20171-202012

國家自然科學基金項目,基于微極理論的彎曲主導型點陣超材料尺寸效應和屈曲行為研究,20201-202312

主要論著

論文

1.         Peng C, Liu J,   Soh AK. Effective dynamic properties of multi-segment beam lattices: a   dynamic stiffness formulation. Acta Mechanica. 2024;In   Press.

2.         Zhao Z, Liu J.   Probing plastic mechanisms in gradient dual-phase high-entropy alloys under   nanoindentation. Journal of Alloys and Compounds. 2023;946:169424.

3.         Wang Y, Liu J.   On the yield surface of a typical bending-dominant periodic lattice   metamaterial. Journal of Theoretical and Applied Mechanics. 2023;61(1):175-187.

4.         Wang B, Liu J.   Padé-Based Strain Gradient Modeling of Bandgaps in Two-Dimensional Acoustic   Lattice Metamaterials. International Journal of Applied Mechanics. 2023;15(02):2350006.

5.         Li X, Liu J,   Soh AK. Prestress-mediated damage strength of lattice metamaterials and   its optimization. International Journal of Fracture. 2023;   In Press.

6.         Chi Z, Liu J,   Soh AK. On complete and micropolar-based incomplete strain gradient   theories for periodic lattice structures. Applied Mathematics and   Mechanics. 2023;44(10):1651-1674.

7.         Chi Z, Liu J,   Kah Soh A. Overlapping-Field Modeling (OFM) of periodic lattice   metamaterials. International Journal of Solids and Structures. 2023;269:112201.

8.         Zhao Z, Liu J,   Soh AK, Tang C. On the snap-through time of a nanoscale elastic strip. Acta   Mechanica Sinica. 2022;38:121219.

9.         Zhao Z, Liu J,   Siddiq A. Plastic Softening Induced by High-Frequency Vibrations   Accompanying Uniaxial Tension in Aluminum. Nanomaterials. 2022;12(7):01239.

10.       Zhao Z, Liu J. On   cyclic plasticity of nanostructured dual-phase CoCrFeNiAl high-entropy alloy:   An atomistic study. Journal of Applied Physics. 2022;132:164307.

11.       Wang B, Liu J, Soh AK,   Liang N. Exact strain gradient modelling of prestressed nonlocal diatomic   lattice metamaterials. Mechanics of Advanced Materials and Structures.   2022;30(13):1-17.

12.       Wang B, Liu J, Soh AK,   Liang N. On band gaps of nonlocal acoustic lattice metamaterials: a   robust strain gradient model. Applied Mathematics and Mechanics   (English Edition). 2022;43(1):1-20.

13.       Li X, Wang B, Liu J.   Constructing continuum models of acoustic metamaterials via the symbiotic   organisms search (SOS) optimization. AIP Advances. 2022;12(11):115320.

14.       Hou M, Liu J, Soh AK.   Modeling lattice metamaterials with deformable joints as an elastic   micropolar continuum. AIP Advances. 2022;12(6):065116.

15.       Chi Z, Liu J, Soh AK.   Micropolar modeling of a typical bending-dominant lattice comprising zigzag   beams. Mechanics of Materials. 2021;160:103922.

16.       Wang Y, Chi Z, Liu J.   On buckling behaviors of a typical bending-dominated periodic lattice. Composite   Structures. 2020;258:113204.

17.       Ma X, Liu J, Wang J, Pan H.   Modeling of dynamic growth of a micro-scaled void based on strain gradient   elasto-plasticity. Journal of Theoretical and Applied Mechanics. 2020;58(4):927-941.

18.       Zhao Z, Liu J, Soh AK,   Tang C. Temperature-mediated fabrication, stress-induced crystallization   and transformation: atomistic simulations of additively manufactured   amorphous Cu pillars. Modelling and Simulation in Materials Science and   Engineering. 2019;27(7):075012.

19.       Zhao F, Pan H, Zhang F,   Liu J. A viscoplastic model for void growth under dynamic loading   conditions. AIP Advances. 2019;9(12):125119.

20.       Zhao F, Ma X, Pan H, Liu J.   Modeling of dynamic elasto-plastic growth of a nano-void with surface energy,   inertia and thermal softening effects. AIP Advances. 2019;9(10):105313.

21.       Wang W, Liu J, Soh AK.   Crystal plasticity modeling of strain rate and temperature sensitivities in   magnesium. Acta Mechanica. 2019;230(6):2071-2086.

22.       Ma X, Liu J. Influence   of pre-tension on torsion of microscale Cu wires: a study via strain gradient   theory. Journal of Theoretical and Applied Mechanics. 2019;57(4):1055-1065.

23.       Liu J, Liang N, Soh AK.   Modeling of progressive failures in quasi-brittle media based on a temporal   stress-redistribution mechanism. Applied Mathematical Modelling. 2019;65:464-488.

24.       Liu J. Simulating   time-dependent quasi-brittle failures based on a multilinear releasing   mechanism of viscous force (VF) fields. Engineering Fracture Mechanics.   2019;216:106490.

25.       Zhao Z, Liu J, Soh AK.   On the Da Vinci size effect in tensile strengths of nanowires: A molecular   dynamics study. AIP Advances. 2018;8(1):015315.

26.       Liu J. Simulating   quasi-brittle failures including damage-induced softening based on the   mechanism of stress redistribution. Applied Mathematical Modelling.   2018;55:685-697.

27.       王夢陽, 劉金興. 泡沫金屬彈性變形尺度效應的理論與數值研究. 工程力學. 2017;34(10):35-43.

28.       Liu J, Wang W, Zhao Z, Soh   AK. On elastic and plastic length scales in strain gradient plasticity. Structural   Engineering and Mechanics. 2017;61(2):275-282.

29.       Liu J, Soh AK.   Gradient-type modeling of the effects of plastic recovery and surface   passivation in thin films. Modelling and Simulation in Materials   Science and Engineering. 2016;24(6):065001.

30.       Liu J, Soh AK. Strain   gradient elasto-plasticity with a new Taylor-based yield function. Acta   Mechanica. 2016;227(10):3031-3048.

31.       Xu J, Liu J, Rajendran S.   A hybrid ‘FE-Meshfree’ QUAD4 element with nonlocal features. Computational   Mechanics. 2015;56(2):317-329.

32.       Liu JX. Analysis of   surface effects on the deformation of a nanovoid in an elasto-plastic   material. Applied Mathematical Modelling. 2015;39(17):5091-5104.

33.       Mora A, Liu JX, El Sayed T.   Constitutive modeling of void-growth-based tensile ductile failures with   stress triaxiality effects. Applied Mathematical Modelling. 2014;38(13):3212-3221.

34.       Liu JX, Demiral M, Sayed   TE. Taylor-plasticity-based analysis of length scale effects in void   growth. Modelling and Simulation in Materials Science and Engineering.   2014;22(7):075005.

35.       Liu J, Soh AK.   Bridging strain gradient elasticity and plasticity toward general loading   histories. Mechanics of Materials. 2014;78:11-21.

36.       Liu JX, Sayed TE. A   variational constitutive model for the distribution and interactions of   multi-sized voids. International Journal of Damage Mechanics. 2013;23(1):124-152.

37.       Liu JX, Sayed TE. A   quasi-static algorithm that includes effects of characteristic time scales   for simulating failures in brittle materials. International Journal of   Damage Mechanics. 2013;23(1):83-103.

38.       Liu J, El Sayed T. On   the Load–Unload (L–U) and Force–Release (F–R) Algorithms for Simulating   Brittle Fracture Processes via Lattice Models. International Journal of   Damage Mechanics. 2012;21(7):960-988.

39.       Liu JX, Chen ZT, Wang H,   Li KC. Elasto-plastic analysis of influences of bond deformability on the   mechanical behavior of fiber networks. Theoretical and Applied Fracture   Mechanics. 2011;55(2):131-139.

40.       Liu J, Chen Z, Li KC.   A 2-D lattice model for simulating the failure of paper. Theoretical   and Applied Fracture Mechanics. 2010;54(1):1-10.

41.       Liu JX, Liang NG.   Algorithm for simulating fracture processes in concrete by lattice modeling. Theoretical   and Applied Fracture Mechanics. 2009;52(1):26-39.

42.       Liu JX, Zhao ZY, Deng SC,   Liang NG. Numerical investigation of crack growth in concrete subjected   to compression by the generalized beam lattice model. Computational   Mechanics. 2008;43(2):277-295.

43.       Liu JX, Zhao ZY, Deng SC,   Liang NG. Modified generalized beam lattice model associated with   fracture of reinforced fiber/particle composites. Theoretical and   Applied Fracture Mechanics. 2008;50(2):132-141.

44.       Liu J, Zhao Z, Deng S,   Liang N. A simple method to simulate shrinkage-induced cracking in   cement-based composites by lattice-type modeling. Computational   Mechanics. 2008;43(4):477-492.

45.       Liu JX, Deng SC, Liang NG.   Comparison of the quasi-static method and the dynamic method for simulating   fracture processes in concrete. Computational Mechanics. 2007;41(5):647-660.

46.       Liu J, Deng S, Zhang J,   Liang N. Lattice type of fracture model for concrete. Theoretical   and Applied Fracture Mechanics. 2007;48(3):269-284.

47.       Deng SC, Liu JX, Liang NG,   Zhang J. Validation of component assembly model and extension to   plasticity. Theoretical and Applied Fracture Mechanics. 2007;47(3):244-259.

48.       Deng S, Liu J, Liang N.   Wedge and twist disclinations in second strain gradient elasticity. International   Journal of Solids and Structures. 2007;44(11-12):3646-3665.

 

專著

  1. J.X. Liu, Z.Y. Zhao, N.G. Liang. Chapter 2:        Numerical and theoretical analyses of tensile failure of shrunk        cement-based composites. In: Computational Mechanics Research Trends        (Ed., H.P. Berger). Nova publisher, 2010.

獲獎情況

江蘇省特聘教授,江蘇省“創新創業”人才

發明專利

 

重要學術  活動

201747~10日,劉金興赴香港參加第13屆蘇港力學論壇。

2017813~16日,劉金興等赴北京參加中國力學大會。

201794~7日,劉金興赴葡萄牙參加第二屆結構完整性國際會議 the 2nd International Conference on   Structural Integrity.

2018511~13日,劉金興等赴江蘇無錫參加“工程結構與材料中的關鍵力學問題研讨會”暨“華東地區固體力學沙龍”。

201863~9日,劉金興赴美國芝加哥參加第十八屆美國理論與應用力學年會 18th U.S. National Congress   for Theoretical and Applied Mechanics)。

2018916~22日,劉金興赴美國海恩尼斯參加12屆結構材料疲勞損傷國際會議 the Twelfth International Conference on Fatigue Damage of   Structural Materials FDSM XII

2018113~5日,劉金興赴上海參加ASCE EMI 國際會議(Engineering Mechanics   Institute International Conference 2018)。

20181123~25日,劉金興等赴哈爾濱參加全國固體力學大會。

2019324~29日,劉金興赴日本東京參加 2019年計算和實驗工程與科學國際會議(The   International Conference on Computational & Experimental Engineering and   Sciences 2019)。

2019824~27日,劉金興等赴杭州參加全國力學大會。同期,劉金興還參加了AWTAM會議。

2019412~14日,劉金興等赴江蘇無錫參加低維材料力學會議。

人生格言

工作容易被安逸的生活所累。

聯系方式

taibaijinxing@ujs.edu.cn

 

 

 

 

 

 
菠菜概況
學院簡介
學院領導
組織機構
規章制度
院史沿革
校友風采
師資隊伍
研究生導師
學院教師
兼職教授
人才招聘
人才培養
本科教育
研究生教育
留學生教育
教學成果
精品課程
 
學科科研
學科建設
科研平台
科研項目
科研成果
社會服務
 
實驗平台
實驗室
管理制度
先進儀器
 
黨群工作
組織機構
黨建動态
分工會工作
關工委
實踐專欄
光榮榜
學生工作
工作團隊
規章制度
科技創新
就業創業
團學風采
緻遠工作坊
下載中心
各類表格
教學文件
學工文件
 
☯⚜☯: 江蘇省鎮江市學府路301号 郵編: 212013 電話:0511-80611110 郵箱:tmlxxy@ujs.edu.cn
Baidu
sogou